To the content
3 . 2022



Currently educational organizations of higher professional education are faced with the need to train qualified personnel with professional competencies that will provide medical workers with labor descriptors for the introduction of digital technologies and work with artificial intelligence in the future. In this regard, it becomes relevant to analyze the main trends in the use of artificial intelligence in healthcare, its prospects for development and problems of implementation in practice. The analysis of 36 domestic and foreign scientific articles on the problem of the introduction of artificial intelligence in healthcare, published in the period from 2002 to 2022, showed that sufficient domestic and foreign experience has been accumulated to determine the main directions for improving the system and quality of medical education in order to meet the needs of the healthcare system for the introduction of digital technologies. The presented review allows us to form an idea about the prospects of using artificial intelligence in medicine, about the need to train future medical professionals who have knowledge and skills to work with artificial intelligence when performing their professional duties in modern conditions.

Keywords:professional medical education; artificial intelligence; digital technologies in medicine

Funding. The study had no sponsor support.

Conflict of interest. The author declares no conflict of interest.

For citation: Bulycheva E.V. Artificial intelligence as a new phenomenon in the development of healthcare and medical education (literature review). Meditsinskoe obrazovanie i professional’noe razvitie [Medical Education and Professional Development]. 2022; 13 (3): 76–84. DOI: (in Russian)


1.Chernaya I.P., Prosalova V.S., Nikolaeva A.A. End-to-end technologies as digital innovations in healthcare and medical education. Teoriya i praktika obshhestvennogo razvitija [Theory and practice of social development]. 2022; 3: 64–73. URL: (in Russian)

2.Soloviev N.V. Artificial intelligence in medicine. Solidarnost’ i sotrudnichestvo: Sbornik materialov nauchnoj konferencii. [Solidarity and cooperation: Collection of materials of the scientific conference]. 2018: 63–6. (in Russian)

3.Joanna Briggs Institute. Checklist for prevalence studies. 2017. URL: (date of access: 27.02.2020)

4.Munn Z., Moola S., Lisy K., Riitano D., Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and incidence data. International Journal of Evidence-based Healthcare. 2017; 13: 147–53.

5.Rezaev A.V., Tregubova N.D. Artificial intelligence and artificial sociality: new phenomena and problems for the development of medical sciences. Jepistemologija i filosofija nauki [Epistemology and philosophy of science]. 2019; 56 (4): 183–99. (in Russian)

6.Rezaev A.V., Tregubova N.D. Websites of development companies as a source of data on artificial intelligence. Comparative analysis of Google, Yandex and Baidu. Sociologicheskij zhurnal [Sociological Journal]. 2021; 27 (4): 118–45. DOI: (in Russian)

7.Itinson K.S. Artificial intelligence as a promising technology in the field of medical education and medicine. Karel’skij nauchnyj zhurnal [Karelian Scientific Journal]. 2020; 9 (2 (31)): 16–8. (in Russian)

8.Polyaeva E.P., Evstafyeva V.A. Artificial intelligence in medicine. Vestnik nauki i obrazovanija [Bulletin of Science and Education]. 2019; (6–2(60)): 15–8. (in Russian)

9.Vorobyov P.A., Vorobyov A.P. How to train artificial intelligence in medicine or reflections on the new role of standardization. Problemy standartizacii v zdravoohranenii [Problems of standardization in healthcare]. 2018; (7–8): 19–34. (in Russian)

10. Pozdneva S.P., Maslov R.V. Problems of humanism and artificial intelligence. Civilizacija – obshhestvo – chelovek [Civilization – society – man]. 2018; (6–7): 19–23. (in Russian)

11. Bogomolov A.I., Nevezhin V.P., Zhdanov G.A. Artificial intelligence and expert systems in mobile medicine. Hronojekonomika [Chronoeconomics]. 2018; 3 (11): 17–28. (in Russian)

12. Dobridnyuk S.L. Artificial intelligence in medicine and healthcare. Informacionnoe obshhestvo [Information society]. 2017; 4–5: 78–93. (in Russian)

13. Zabavnikov A.E. Artificial intelligence and medicine. Filosofskie tradicii i sovremennost’ [Philosophical traditions and modernity]. 2017; 1 (11): 66–73. (in Russian)

14. Kulberg N.S., Gusev M.A., Reshetnikov R.V., Elizarov A.B., Novik V.P., Prokudailo S.B., Filippovich Yu.N., Gombolevsky V.A., Vladzimirsky A.V., Kamynina N.N., Morozov S.P. Methodology and tools for creating training samples for artificial intelligence recognition systems lung cancer on CT images. Zdravoohranenie Rossijskoj Federacii [Healthcare of the Russian Federation]. 2020; 64 (6): 343–50. DOI: (in Russian)

15. Melnikov P.V., Dovodov V.N., Kanner D.Yu., Chernikovsky I.L. Artificial intelligence in oncosurgical practice. Tazovaja hirurgija i onkologija [Pelvic surgery and oncology]. 2020; 10 (3–4): 60–4. (in Russian)

16. Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M., Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; (542): 115–8.

17. Wang S.Z., Wang J.G., Lu Y. Clinical application of convolutional neural network in pathological diagnosis of metastatic lymph nodes of gastric cancer. Zhonghua Wai Ke Za Zhi. 2019; 57 (12): 934–8. DOI:

18. Wang D., Xu J., Zhang Z. et al. Evaluation of rectal cancer circumferential resection margin using faster region-based convolutional neural network in highresolution magnetic resonance images. Dis Colon Rectum. 2020; 63 (2): 143–51. DOI:

19. McKinney S.M., Sieniek M., Godbole V. et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577: 89–94.

20. Lakhani P., Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017; 284: 574–82.

21. Fritz B.A., Cui Z. Zhang M. Deep-learning model for predicting 30-day postoperative mortality. Br J Anaesth. 2019; 123 (5): 688–95. DOI:

22. Rajkomar A., Oren E., Chen K., et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018; (1): 18.

23. Weng S.F., Vaz L., Qureshi N. Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS One. 2019; 14 (3): e0214365. DOI:

24. Brennan M., Puri S., Ozrazgat-Baslanti T., Feng Z., Ruppert M., Hashemighouchani H., Momcilovic P., Li X., Wang D.Z., Bihorac A. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study. Surgery. 2019; 165 (5): 1035–45.

25. Pyatin V.F., Kolsanov A.V., Romanchuk N.P., Romanov D.V., Davydkin I.L., Volobuev A.N., Sirotko I.I., Bulgakova S.V. Bioinformatics and artificial intelligence: gerontological and geriatric components of medical and social support for active healthy longevity. Bjulleten’ nauki i praktiki [Bulletin of Science and Practice]. 2020; 6 (12): 155–75. (in Russian)

26. Ostrovova A.V. Artificial intelligence in medicine. Dostizhenija nauki i obrazovanija [Achievements of science and education]. 2018; 1 (23): 9–11. (in Russian)

27. Kushnerova I.A., Akimov S.S. Prospects for the use of artificial intelligence in medicine. Materialy VIII Vserossiyskoy nauchno-practiceskoy konferentsii «Kompyuternaya integratsiya proizvodstva i IPI-tekhnologii» [Materials of the VIII All-Russian Scientific and Practical Conference «Computer integration of production and IPI technologies»]. 2017: 249–50. (in Russian)

28. Shataev D.A. The problem of artificial intelligence in medicine. Kachestvo zhizni: sovremennye riski i tehnologii bezopasnosti: materialy II mezhdunarodnoj nauchno-prakticheskoj konferencii [Quality of life: modern risks and security technologies: materials of the II International Scientific and practical Conference]. 2017: 262–6. (in Russian)

29. Averyanova O.A., Korshak V.I. Artificial intelligence in the conditions of modern medicine. Estestvennye i matematicheskie nauki v sovremennom mire [Natural and mathematical sciences in the modern world]. 2016; 42: 34–8. (in Russian)

30. Chubov S.A. Theoretical and technological aspects of the formation of professional competence of future pharmacists based on the use of artificial intelligence. Izvestija volgogradskogo gosudarstvennogo pedagogicheskogo universiteta [Proceedings of the Volgograd State Pedagogical University]. 2022; 2 (165): 117–21. (in Russian)

31. Denisov E.I. Robots, artificial intelligence, augmented and virtual reality: ethical, legal and hygienic problems. Gigiena i sanitarija [Hygiene and sanitation]. 2019; 98 (1): 5–10. DOI: (in Russian)

32. Handbook of virtual environments: design, implementation, and applications. Ed. by Stanney K.M., Hale K.S. CRC Press, 2002. 1232 p. ISBN:080583270X

33. Herrera A.K., Mathew F.Z., Gugliucci M.R., Bustillos C. Augmented reality, virtual reality, & health . NIH-NNLM NER. Repository. 42. University of Massachusetts Medical School, 2017. 75 p. URL: http://escholarshipumassmededu/ner/42 (date of access 25.2.2021)

34. Johnson S., Coxon M. Sound can enhance the analgesic effect of virtual reality. Royal Society open science. 2016; 3 (3): 150567.

35. Jones T., Moore T., Choo J. The impact of virtual reality on chronic pain. PloS one. 2016; 11 (12): e0167523. DOI:

36. Bukhtiyarov I.V., Denisov E.I. Hygienic aspects of robotization: risk factors and safety principles. Gigiena i sanitarija [Hygiene and sanitation]. 2021; 1: 6–12. (in Russian)

Balkizov Zalim Zamirovich
Professor of the Department of Professional Education and Educational Technologies, Associate Professor of the Department of Hospital Surgery of the N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, member of the Coordinating Council for Personnel Policy of the Ministry of Health of the Russian Federation, Adviser to the President of the National Medical Chamber, Executive Secretary of the Commission for Accreditation of Continuing Medical Education Events in the National Medical Chamber, Secretary General of the Russian Society of Medical Specialists General Representative of the Association for Medical Education in Europe, General Director of GEOTAR-Med
Medicine today

Приветствуем вас в новом 2023 году, который мы встретили с надеждой и неизменно с планами на будущее! Традиционно в феврале ученики Николая Олеговича Миланова, сотрудники основанной им кафедры в Сеченовском Университете, планируют проведение уже девятой мемориальной...

Уважаемые коллеги! 10.02.2023 состоится Совместный научно-образовательный симпозиум Национальной Ассоциации по тромбозу и гемостазу и ФГБНУ "Научный центр неврологии" "Тромботические проблемы при цереброваскулярной патологии и коморбидных процессах". Начало регистрации в...

Приглашаем специалистов Сибирского федерального округа 9-10 февраля посетить Школу РОАГ! Успешно продолжается образовательная работа общероссийского проекта "Школы РОАГ". Очередная встреча пройдет 9-10 февраля в онлайн-формате и объединит врачей Иркутска, Кемерово, а также...

Journals of «GEOTAR-Media»